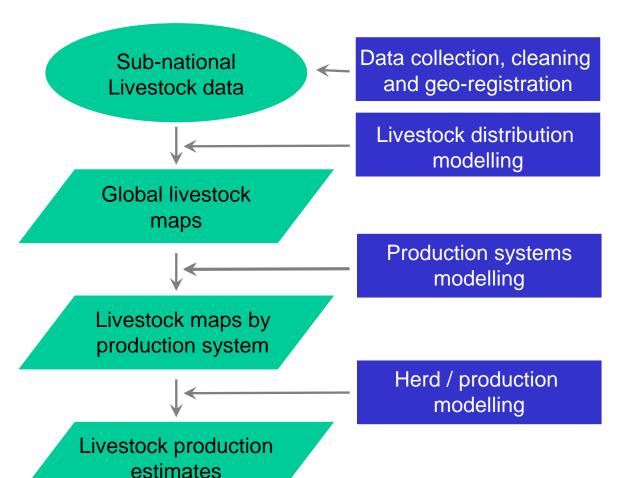
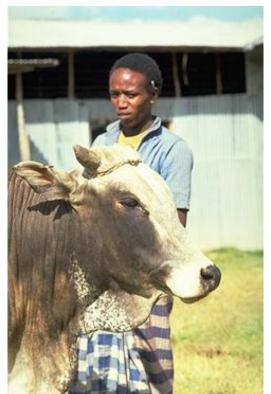
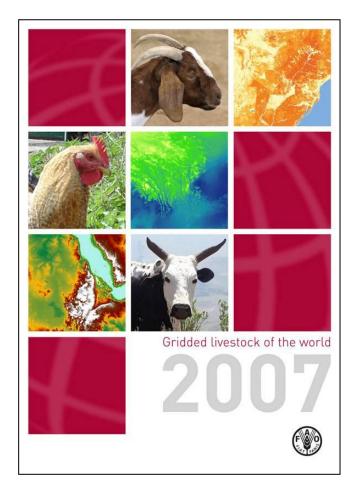
African Drylands: Spatial analysis and baseline data

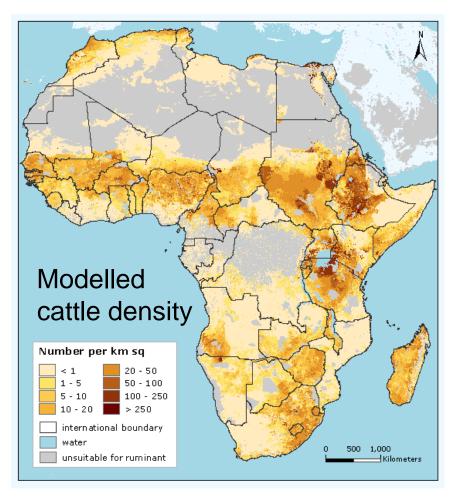
Tim Robinson


World Bank, Washington D.C. 29-30 January 2013

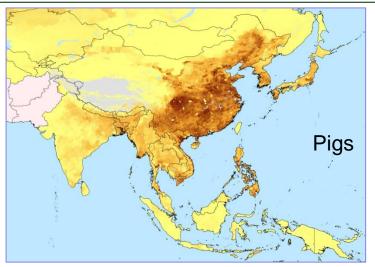

Overview

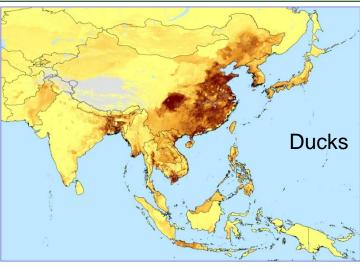
- Estimating livestock production
 - livestock distribution and abundance
 - livestock production systems
 - livestock production rates (by system)
- Mapping livestock densities
- Mapping (ruminant) production systems
- Example of spatial targetting and impact assessment
 - trypanosomosis control in the Horn of Africa
- Poverty mapping
- Mapping demand growth for animalsource foods

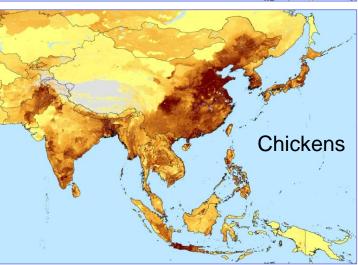

Livestock distribution and production


Livestock distributions (GLW 2007)

- Gridded Livestock of the World (GLW)
- Global coverage
- 5 km resolution GIS data
- All major livestock species
- Predicted densities, standardised to 2000 and 2005 (FAOSTAT)
- Freely available in graphic, GIS (ESRI) and Google Earth formats

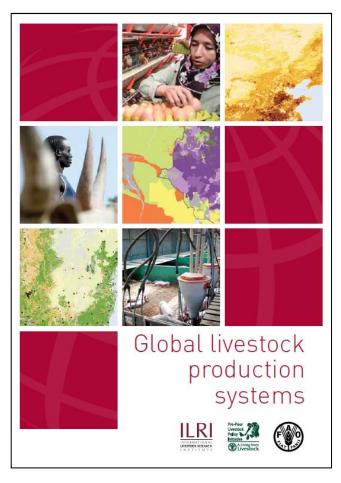

Wint and Robinson (2007)


Livestock distributions (GLW 2007)



- Collect sub-national statistics
- Geo-register (link to shape file)
- Convert to densities, adjusted for area 'suitable' for livestock
- Compile predictor variables and stratification layers
- Derive statistical models of livestock densities for each stratum
- Apply models to predictor variables
- Adjust density maps to match official, time-standardised FAOSTAT totals

Livestock distributions (GLW 2013)


- Updated sub-national statistics
- Predictor variables: 1km MODIS data
- New, improved modelling approach
- Standardised to FAOSTAT 2006
- Done for monogastirc species in Asia
- Ready to do ruminant species in Africa

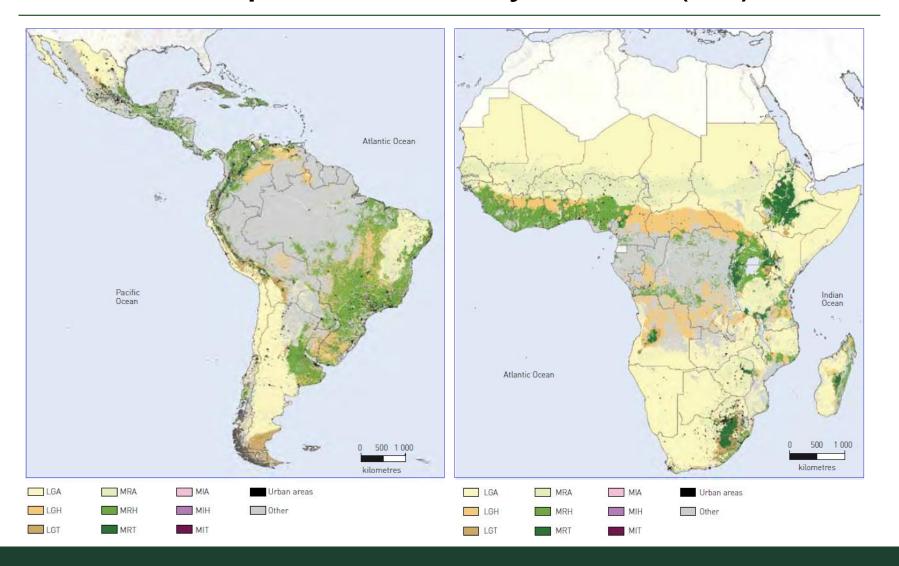
Density (log scale)

Source: Robinson, Gilbert et al. (2013)

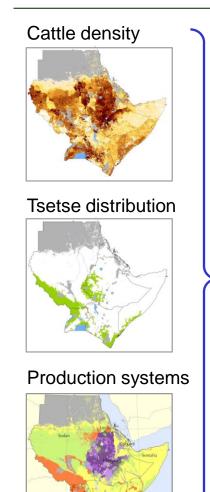
Livestock production systems

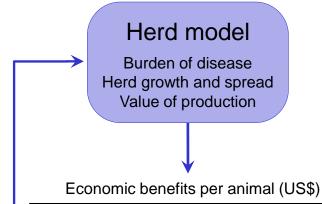
- Ruminant systems: based on land use and agro-ecological potential
- Monogastric systems:
 based on scale and intensification

Robinson et al. (2011)

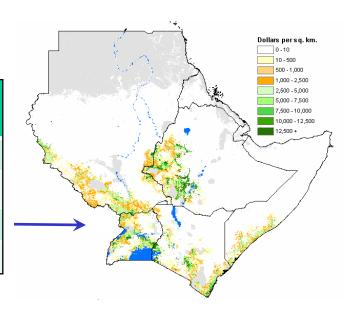

Ruminant production systems

Land cover (GLC 2000)


Agro-ecology (LGP, temperature, elevation)

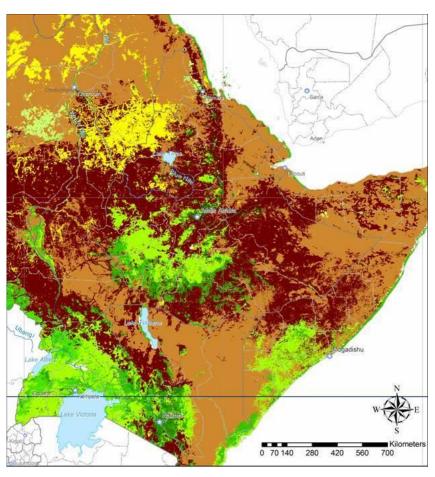

	Danadaad	Crop	oland	T	Artificial surfaces	
	Rangeland	Rain-fed	Irrigated	Tree cover		
Arid & Semi-arid	LGA	MRA	MIA			
Humid and Sub- humid	LGH	MRH	MIH	Other	Urban	
Temperate or Tropical highland	LGT	MRH	MIH			

Ruminant production systems (v5)


Spatial targetting & impact assessment

Cattle production system	Pastoral	Agro- pastoral	Mixed farming (general)	Mixed farming (Ethiopia)	
Low oxen	63	82	90	102	
Medium oxen	_	98	122	135	
High oxen	-	118	152	161	
High dairy	_	142	148	_	

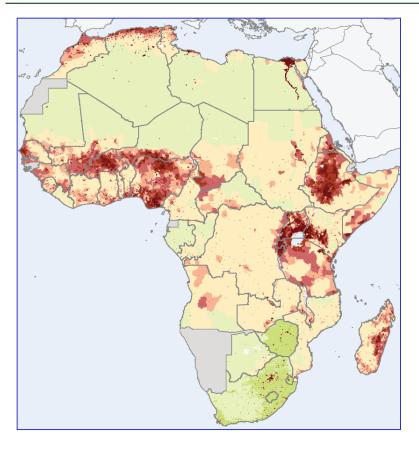
Economic benefits over 20 years of trypanosomosis removal


Source : Shaw et al. (in press)

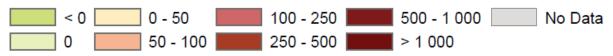
Poverty mapping

Observed Regional Wealth Index

WI_REG units by HH Predicted WI Values 0 0 -3 to -0.83 -0.82 to -0.78 -0.77 to -0.64 -0.63 to -0.58 -0.57 to -0.44 -0.43 to -0.3 -0.29 to 0.06 0.07 to 0.68 0.69 to 1.55 -1.56 to 3.64 Again's Rings


Predicted Regional Wealth Index

Livestock to 2030 – demand growth


REGION -	Beef		Milk		Mutton		Pork		Poultry		Eggs	
	Abs.	Prop.	Abs.	Prop.	Abs.	Prop.	Abs.	Prop.	Abs.	Prop.	Abs.	Prop.
East Asia and Pacific	8,798	130%	23,765	132%	1,669	58%	28,075	63%	22,522	143%	10,188	45%
China	6,888	132%	15,936	143%	1,537	56%	22,050	54%	14,609	121%	6,810	34%
Eastern Europe and C. Asia	290	11%	4,364	15%	204	40%	112	5%	2,310	108%	684	28%
Latin America and Caribbean	7,302	58%	39,818	72%	239	54%	4,405	100%	14,434	126%	3,246	78%
Middle East and N. Africa	1,929	112%	17,913	111%	1,287	103%	9	52%	6,296	243%	1,799	148%
South Asia	3,367	84%	118,942	126%	1,722	115%	950	160%	11,491	725%	5,947	294%
India	1,338	51%	79,330	119%	588	85%	921	160%	8,865	844%	4,251	280%
Sub-Saharan Africa	3,768	113%	20,939	107%	1,883	137%	1,106	155%	3,235	170%	1,727	155%

Livestock to 2030 – demand growth

- Mapped growth in demand for beef in Africa: 2000 to 2030
- New data have a baseline of 2006 and revised projections to 2030 and 2050

Consumption (kg/sqkm)

